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Abstract a, the distribution for the log spectrum vectot is modeled as
. . . p(Xa‘Sa) :N(xa;usa723a,)_
We describe a system for model based speech separation which  The model for mixed speech in the time domain is (omitting
achieves super-human recognition performance when two talkersihe channely[t] = z°[] 4t [t] wherey([t] denotes the mixed sig-

speak at similar levels. The system can separate the speech of tW@a|, \We approximate this relationship in the log spectrum domain
speakers from a single channel recording with remarkable results.gg

_It incp_rporates a n0\_/el m_ethoq for performing two-talker speaker p(y\x“,xb) = N(y;In(exp(x®) + exp(xb)), ) 1)
identification and gain estimation. We extend the method of model T o
based high resolution signal reconstruction to incorporate tempo-Where¥ is introduced to model the error due to the omission of
ral dynamics. We report on two methods for introducing dynam- Phase. Notice that this relationship is nonlinear.

ics; the first uses dynamics in the acoustic model space, the second ~ The joint distribution of the two sources, their state and the
incorporates dynamics based on sentence grammar. The additioPservation is

of temporal constraints leads to dramatic improvements in the sep- (357 X 5% 5) = ply [ )p(c” s p (18P (%) (). (2)
aration performance. Once the signals have been separated theyP\¥: X, X, § J=ply|X,X )p P LS )PLS )

are then recognized using speaker dependent labeling. . o
2.1. Fast Likelihood Estimation

1. Introduction Unlike a traditional recognizer, we must take into account the joint

) - ) . evolution of the two signals simultaneously. Hence we need to
Qne of the most challenging speech recognition tasks is recogniz-gya|uate the joint observation likelihopdy]|s®, s°) at every time
ing speech when two speakers talk simultaneously. The ICSLP gian

2006 Speech Separation Challenge [1] gives us an opportunity to Algonquin [2] can be used to accurately approximate the ob-
expand earlier work on source model based signal reconstructiongeyation likelihood. Algonquin uses the Newton-Laplace method
[2] and demonstrate the importance of temporal dynamics at any approximate the joint posterior computed from Eqn. (2) with
acoustic and sentence level. Using both acoustic and sentence leve] weighted Gaussian. Once the joint distribution has been ap-
dynamics our system produces astonishing results. The system i?)roximated,p(y|s“ s*) can be found, as well as minimum mean
able to extract two utterances even when the same speaker is talkéquared error (Ml\/iSE) amaximum a posterio(MAP) estimates

ing at the same pitch in the original recording for x® andx®.

The system is comprised of the three components: a speaker e ysed 256 component Gaussian mixture models (GMM) to
identification and gain estimation component, a signal separationmqgel the acoustic space of each speaker. In this case, the eval-
component and a speech recognition system. Section two de-ation ofp(y|s®, s*) requires the evaluation @62 or over 65k
scribes the source models, section three describes the speaker idefe\ton-Laplace or max estimates. In order to speed up the evalu-
tification component, section four describes how the acoustic andtion of the joint observation likelihood, we employed bsnd
grammar constraints were incorporated, section five describes thegantizationof the component GMMs and joint-state pruning.
SDL recognizer and the last section describes the experiments angrhjs gave three orders of magnitude speedup over the brute force
results. approach.

Band quantization involves approximating each of the
2. Source Models and Likelihood Estimation Gaussians of each model with a shared set Gaussians, where
< D, in each of the319 frequency bands. It relies on
e use of a diagonal covariance matrix, so tpét®|s®) =
[I; N(z§; psse,0,50), Whereoy .o are the diagonal elements

. . . .d
The speech separation challenge involves recognizing speech i
files that are mixtures of two component signals. Each of the com-

ponent signalsz“[t] andz®[t] for speaker a and b are modeled . _ .
by a conventional continuous observation hidden Markov model O.f Use. _The mappingM (s:) _assogates each of he Gaus-
sians with one of thel Gaussians in frequency barfd Now

(HMM) with Gaussian mixture models (GMM) for representing =~ ™ = ©° N (2% - d
the observations. The main difference between our model and tha®(&" 15%) = }_L; (x; Kf,Myp(s)s My (s)) 18 used as a surro-
of a standard recognizer is that observations are in the log-powerd2ate forp(z“|s®). Under this model thél Gaussians are chosen

spectrum domain. Hence, given an HMM state of speaker 0 Minimize the KL-distanceD(p(z“|s*)||p(z"|s")), and like-
wise for s®. Then in each frequency band, onlyx d, instead

Laudio samples can be found attp : //researchweb.watson.ibm.com/ of Dx D COI’T':]bInatIOI"IS of Gaussians have to be evalua_ted to com-
people/t/trausti_kristjansson/ICSLP2006/ putep(y|s®, s”). In our cased = 8 andD = 256, so this saves




over three orders of magnitude of computation time. where ¢(by, (c)) is a confidence weight that is assigned

Only a handful ofs®, s> combinations are required to ade- based on the structure df, (c), defined here as
quately explain the observation. By pruning the total number of
combinations down to a smaller number we can speed up MMSE 1 maxcby,(¢) >~
estimation of the components signals as well as the temporal in- P(by, (c)) = { 0 otherwige (6)
ference. In the experiments reported here, we pruned down to 256
combinations.

The maxapproximation [3] provides an efficient if less accu-
rate approximation to the joint observation likelihood. The max 3. Compute the component class posterior as usual via:
approximation assumes(y|s®,s’) = pga(y|s®) if the mean
p® of z* is larger than the meap® of z° and p(y|s®,s%) =
P (y|s®) otherwise.

We relied on the max approximation for speaker identification . ) )
and gain estimation and the Algonquin method for signal sepa- ' herefore frame beliefs,, (c) with high entropy, that are

ration. The effect of these speedup methods on accuracy will beot Well explained by any component in the concatenated source
reported in a future publication. model, will be discarded. On average, the model can only explain

20% of the data frames. Therefore we use only those frames that
fit the model well to estimate what sources are in the mixture.

where~ is a chosen threshold.

p(cly) o< p(yle)p(c)

3. Speaker Identification and Gain

Estimation 6dB 3dB 0dB -3dB -6dB -9dg Al

We developed an efficient model-based method for identifying the ST | 100 100 100 100 100 100 100
signal sources (e.g. speakers or noise types) that are present i SG | 90 95 96 96 92 80| 92
a mixed signal as well as the gain of each source. This method DG | 89 93 92 88 85 74| 87
avoidsexplicitly considering all possible source combinations and All 93 96 96 96 95 92| 95
facilitates the utilization of source-specific, gain normalized mod-
els during the the source separation phase. . .
The algorithm is based upon a very simple idea: identify and T_able 1: Percentage of _utterances w_lth bc_>t_h speakers in the 2-best
utilize frames that are dominated by a single source to determine!iSt Output by the described source identification algorithm. ST-
what sources are present in the mixture. The output of this stageSame Talker, SG-Same Gender, DG-Different Gender.
is a short list of candidates. The combination of candidates on
the short-list that maximizes the probability of the mixture under a Table 1 reports the speaker identification performance ob-
gain adaptive approximate EM procedure is then selected. tained by the described algorithm on the SSC two-talker data. Here
Despite the fact that this model will not generally be able to the percentage of files where both speakers are identified as one of
explain frames that are not dominated by a single source, we modekhe two most probable source classes are reported. We can see
the signal mixture for each processing framas generated from  that on average over all conditions the two speakers are identified
a single source class and assume that each source class is de- correctly 95% of the time (99% average identification accuracy is

scribed by a mixture model: obtained when the 3 most probable components are considered).
Given a short-list of finalists chosen accordingpi@|y) as

pyle) = D) memo Ny poe + 9, s +T) (3) computed above, we identify the present components by apply-

g s° ing a max-based approximate EM algorithm to find the gains and

. . ) identify the most probable speaker combination.
where the gain parametghas been modeled as a discrete variable

with domain{3,0, —3, —6, —9} (the models and data were AGC . .
normalized) f/vith priorrsg takgn as uniformI" is the covariance 4. Dynamlc SpeeCh Models and Joint Space
of the observation noise which is assumed to be zero mean, and Inference
7se is the prior probability of state in component clasa. 2

To form a useful estimate gf(c|y) we apply the following
simple algorithm:

In a traditional speech recognition system, speech dynamics are
captured by state transition probabilities. We took this approach
and incorporated botacoustic dynamicandgrammatical dynam-
1. Compute the frame belief as the normalized likelihood of  ics via state transition probabilities.

giveny, for each frame
4.1. Acoustic dynamics

by, (c) = p(y,lc)/ > p(y,lc). @)

To capture acoustic level dynamics, which directly models the dy-
namics of the log-spectrum, we estimated transition probabilities
between the states of the 256 component GMM models for each
speaker. The acoustic dynamics of the two indelf)endbent speak-
ers are modeled by state transitigris?, , |s{) andp(s7,1]s?) for
p(yle) = Z by, (€)) - by, (), ®) speaker a and b respectively. Hencg, f‘or each spet;tkm esti-
K mated 256 x 256 component transition matrid..

2. Approximate the component class likelihood by

T was set to zero for the two-talker case, and estimated using low-
power frames in the stationary noise case. 3y was set td).5 for all reported results.




4.2. Grammar dynamics 5. Recognition using Speaker Dependent

The grammar dynamics are modeled by grammar state transitions, Labe“ng (SDI—)

p(Li11|Lf), which consist of left-to-right phone models. The le-  Once the two signals have been separated, we decode each of the
gal word sequences are given by the Speaker Separation Challengsignals with a speech recognition system that incorporates SDL.
grammar [1] and are modeled using pronunciations that map to  we employed MAP training [5] to train speaker dependent
three-state context-dependent phone models. The sequences @fiodels for each of the 34 speakers. The performance of the
phone states for each pronunciation, along with self-transitions speaker dependent models and the baseline gender dependent la-
produce a Finite State Graph (FSG). The state transitions derivedpeling system (GDL) is shown in Table 2. We added colored noise
from this graph are sparse in the sense that most state transitioryf the same nature as found in the development set to generate
probabilities are zero. new training data. We were able to obtain much better results in
For a given speaker, the FSG of our system has 506 gram-the noisy conditions as seen in Table 2.
mar statesL. We then model speaker dependent distributions
p(s°|L°) that associate the FSG states to the speaker dependens.1. Theory of SDL

GMM model states. These are learned from training data where . . - .
the grammar state sequences and GMM state sequences are knovJHStead. of using the speaker identities provided by the speaker ID
for each utterance. and gain module, We_foIIO\_Ned the app_roach for gender dependent
To combine the acoustic dynamics with the grammar dy- Iapellng (GDL). descrlb.ed in [6]. .As will be shown belowlfor the
namics, it was useful to avoid modeling the full combination noise case, this technique provides better results than if the true
’ speaker ID is specified.

of s and L states in the joint transitions(sz|st_s, Lt). In- Each speaker is associated with a set of 39 dimensional cep-
stead we make a nalve-Baygs assumptlc.)n. to approximate this 83trum domain acoustic Gaussian mixture models. We have the
2p(st|st-1)p(st|L+), wherez is the normalizing constant. following estimate for the a posteriori speaker probability at a par-

) . ticular framex;:
4.3. 2D Viterbi search

The Viterbi algorithm estimates the maximum likelihood stat o = e TN e, D)
e Viterbi algorithm estimates the maximum likelihood state se- st = : .
quences; ..t given the observations; .. The complexity of the e Yo Tor N (45 e, B
Viterbi search isD(D? - T)) whereD is the number of states and  Once the two components signals have been extracted, we assume
T is the number of frames. For producing MAP estimates of the 2 that the speaker identity is constant over many frames. However,
sources, we require a 2 dimensional Viterbi search which finds the SDL does not make the assumption that each file contains only
most likely joint state sequence$  andsé ; given the mixed one speaker. Instead, an estimate for the speaker probability for
signaly:..— as was proposed in [4]. Surprisingly, this 2D Viterbi speakek at timeT" can be defined as
search is of complexity(D? - T), and notO(D* - T). By ex- -

loiting the sparsity of the transition matrices and pruning the ob- t
Eervat?on Iike?ihoo?j/s, our implementation of 2D ViE[)erbi sgearch is pe(T) = Z(l —a)a Ye,r—t (7
faster than the Algonquin likelihood computation.

t=0

This estimate (7) has the advantage that it can be efficiently com-

4.4. Methods of Inference puted in an online fashion as
In our experiments we performed inference in three different con- pe(T) = ape(T' = 1) + (1 — &) ye,7—+.
ditions: GMM inferenceacoustic dynamicsaindgrammar dynam-  The effective window size for the speaker probabilities is given by

ics. The GMM inference has no temporal dynamics and source /(1 — @), and can be set to match the typical duration of each
estimates?(x"|y) and E(x"|y) are inferred using posteriors of  gpeaker. We chose/(1 — «) = 100, corresponding to a speaker
Ean. (2) and marginalizing over state§ s~ (see [2] for details). duration of 1.5 s. The onlina posteriorispeaker probabilities are

In the acoustic dynamics condition, the exact inference al- close to uniform even when the correct speaker is the one with the
gorithm uses the 2D Viterbi search, with acoustic temporal con- highest probability. We can remedy this problem by sharpening
straintsp(s:|s¢-1) and likelihoods from Eqn. (2), to find the most  the probabilities to look more like 0-1 probabilities. The boosted

likely joint state sequence..r. speaker detection probabilities are defined as

In the grammar dynamics condition we use the model of

. X . . i .(T)ﬁ
section 4.2. Exact inference is computationally complex be 7o(T) = DPe ) 8)
cause of the large number of joint grammar and acoustic states, Yo pr(T)P

(L x 5%) x (L x s®). Thus we perform approximate inference
by alternating the 2D Viterbi search between the cartesian product
5% x s’ of the acoustic state sequences and the cartesian produc
L x L® of the grammar state sequences. When evaluating each
state sequence we hold the other chain constant, which decouples GMM(x7) = Z 7e(T)GMM. (x71).
its dynamics and allows for efficient inference. Details of various -
alternative approximate inference strategies for this model will be
explored in future publications.

Once the maximum likelihood joint state sequence is found

we can infer the source log-power spectrum of each signal and  “4Besides the oracle condition, no prior knowledge of the speaker ID or
reconstruct them [2]. noise condition was used in generating the results.

We used8 = 6 for our experiments. During decoding we can
ow use the boosted speaker detection probabilities to give a time-
ependent Gaussian mixture distribution:

As can be seen in Table, 2 the SDL system outperforms the oracle
systeni.




System Noise Condition 6dB 3dB 0dB -3dB -6dB -9dB All
clean 6dB 0dB -6dB -12dB ST 29 42 47 47 46 55 | 44.3

HTK 1.0 457 820 886 872 SG 8 10 13 13 15 30 | 14.8

GDL-MAP | 20 332 686 854 873 DG 9 8 11 18 22 36 | 17.3

GDL-MAP I 2.7 76 148 496 77.2 Al | 16.0 212 250 268 28.8 41.2]| 26.5

oracle 11 4.2 84 391 764

SDL 14 34 77 384 773

Table 3: Word error rates (percent) for grammar and acoustic con-
straints. ST-Same Talker, SG-Same Gender, DG-Different Gen-
Table 2: Word error rates (percent) on the noisy development set.der. Conditions where our system outperformed human listeners
The error rate for the “random-guess” system is 87%. The sys- are bolded.
tems in the table are: 1) The default HTK recognizer, 2) IBM—
GDL MAP-adapted to the speech separation training data, 3) . ) .
MAP—adapted to the speech separation training data and artifi-  Figure 1 shows results for the 3 different conditions. Human
cially generated training data with added noise, 4) Oracle MAP listener performance [1] is shown along with the performance of
adapted Speaker dependent system with known speaker IDs, 55he SDL recognizer without separation, GMM without dynam-

MAP adapted speaker dependent models with SDL ics, using acoustic level dynamics, and using both grammar and
acoustic-level dynamics.

The top plot in Figure 1 shows word error rates (WER) for
6. Experiments and Results the Same Talkecondition. In this condition, two recordings from
the same speaker are mixed together. This conditions best illus-
The Speech Separation Challenge [1] involves separating thetrates the importance of temporal constrains. By adding the acous-
mixed speech of two speakers drawn from of a set of 34 speakerstic dynamics, performance is improved considerably. By combin-

An example utterance fslace white by R 4 nowin each record-  ing grammar and acoustic dynamics, performance improves again,
ing, one of the speakers sayite while the other sayblue, red surpassing human performance in thg dB condition.

or green The task is to recognize the letter and the digit of the The second plot in Figure 1 shows WER for the Same Gender
speaker that saigrhite. condition. In this condition, recordings from two different speak-

We decoded the two component signals under the assumptiorers of the same gender are mixed together. In this condition our
that one signal contains white and the other does not, and ViCEsystem surpasses human performance in all conditions escept
versa. We then used the association that yielded the highest comgB and—9 dB.
bined likelihood. The third plot in Figure 1 shows WER for the Different Gender

Log-power spectrum features were computed at a 15 ms rate.condition. In this condition, our system surpasses human perfor-
Each frame was of length 40 ms and a 640 point FFT was usedmance in the) dB and3 dB conditions. Interestingly, temporal
producing a 319dimensional log-power-spectrum feature vector. constraints do not improve performance relative to GMM without

dynamics as dramatically as in the same talker case, which indi-
cates that the characteristics of the two speakers in a short segment
100 2 Same Talker are effective for separation.

The performance of our best system, which uses both gram-
mar and acoustic-level dynamics, is summarized in Table 3. This

sor ] system surpassed human lister performance at SNRsiBfand
—3 dB on average across all speaker conditions. Averaging across
o all SNRs, the system surpassed human performance in the Same
6B sds ods —3dB ~6db —0d8 Gender condition. Based on these initial results, we envision that
b) Same Gender super-human performance over all conditions is within reach.

100 T T
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